Close Server: KOPWWW05 | Not logged in

Welcome to Health Care POV | sign in | join
Shifting Rehab Paradigms

Data Mining and Analytics in Healthcare

Published September 26, 2016 9:59 AM by Viktoriya Friedman

With use of the Internet increasing exponentially, the amount of data being processed has exploded. Nowadays, even the healthcare business, a world of its own, untouched by the IT phenomena one decade ago, is forced to embrace the Internet. Currently, customer behaviors and preferences, their medical information and  shopping patterns are mostly all online. With this amount of information to process, the need for data mining of this large scale data became more obvious 1. Data mining, a field at the intersection of computer science and statistics,1, 2, 3 is the process that attempts to discover patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics and database systems.The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.2

Doesn’t this sound fantastic? As a private owner of a physical therapy clinic, I would want to know everyone searching the web to find the right exercises, to minimize joint pain, or to improve their golf swing after a shoulder surgery. As a director of rehabilitation services, I would like to find out who is searching the web to find the best short term rehabilitation center in the area for their loved one. As a physical therapist, I would like to have software that allows me to enter objective data from my evaluation and will yield a set of potential diagnoses to optimize my treatment plan of care. As a mom of two kids who were raised to like organic almond milk, I would hope local stores are making a note of this fact and are sending me some coupons for my future milk purchases. That’s data mining and it’s everywhere.

How can data mining benefit healthcare and how can we embrace this technological phenomenon? Because standardization of data is at the core of data mining, healthcare professionals must embrace and perfect the use of EHR.

Dr. Chid Apte is a director of analytics research in the IBM Research Division at the Thomas J. Watson Research Center in Yorktown Heights, New York.  In one of his publications, Data mining and clinical data repositories: Insights from a 667,000 patient data set, he concluded that data mining technologies “…have the potential to expand research capabilities through identification of potentially novel clinical disease associations2.” Using analytics in healthcare is not only beneficial, but essential. For example, companies such as Edifecs assist in ICD-10 compliance. According to the company, Edifecs ICD-10 Impact Analytics enables healthcare entities to identify ICD-10 impacts based on their historical data. This is a critical first step toward understanding the challenge and determining how to address the ICD-10 mandate. As our healthcare world is striving to become more standardized in evaluations of diseases, treatment techniques and preventive medicine, data mining can be the essential step in maximizing clients’ quality of care and quality of life.




2.       Statistics and Web Analytics – Hypothesis Testing:




leave a comment

To prevent comment spam, please type the code you see below into the code field before submitting your comment. If you cannot read the numbers in the image, reload the page to generate a new one.

Enter the security code below: